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1 Abstract  
The University of York Computer Science Department requires an electronics 
simulator package to complement its laboratory time.  Current solutions are shown to 
be inadequate for the task, so a new simulator is created.  An innovative graphical 
interface is developed and a cross-platform solution is implemented with the use of 
Java.  Extensibility of the application is ensured through the use the use of a plug-in 
component architecture.  The solution is thoroughly tested and found to be reliable for 
use in the design and testing of student circuitry. 
 

2 Introduction 
The Computer Science Department at the University of York offers courses in 
electronic systems design and implementation.  Projects involve designing and 
creating digital microprocessor-controlled systems where interfacing of input and 
output devices is sometimes necessary. 
 
Students working in departmental electronics laboratories have to be supervised by 
experienced students or staff, therefore there are time limitations on the available 
sessions.  A program such as an electronic simulator would allow students to design 
and test systems outside of the laboratory, reducing time pressures. 
 
The Computer Science laboratory computers run Linux whereas the majority of the 
University computers feature Microsoft Windows, hence any simulation software 
must run on both of these operating systems.  This suggests that a simulator design 
ensuring ease of portability or choice of implementation language is necessary, such 
that the application will run in both environments. 

2.1 Simulation 
To get a better understanding of the software available or to design a new application, 
the concept of simulation must first be understood.  The Collins English Dictionary 
[1] defines to simulate and simulator as: 
 

simulate vb –lating, -lated 1 to pretend to feel or perform (an emotion 
or action); imitate: I tried to simulate anger. 2 to imitate the 
conditions of (a situation), as in carrying out an experiment: we can 
then simulate global warming. 3 to have the appearance of: the wood 
has been painted to simulate stone. simulated adj simulation n 

simulator n a device that simulates specific conditions for the 
purposes of research or training: a flight simulator. 

 
Hence, a computer simulation is a program that imitates or models an object or 
system.  A system is defined as a collection of interacting elements that function 
together for some purpose [2]. 

2.1.1 Advantages of Computer Simulation 
The main advantage of simulation is that it enables testing and design of a system 
before moving onto construction.  By identifying faults in the design stage, it may be 
possible to avoid costly errors from appearing later in the product cycle.  It may also 
be possible to determine the efficiency and accuracy of the design and allow the user 
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to experiment with several different approaches without ever having to build 
anything. 
 
Simulation is also advantageous where design or operational failure has potentially 
life threatening risk.  Examples include Nuclear reactor testing and pilot training 
neither of which can be performed safely on real systems. 

2.1.2 Disadvantages of Computer Simulation 
The disadvantages of computer simulation lie mostly in the fact that it is inherently 
computationally expensive to accurately model most real world systems as there are 
potentially infinite factors which could be considered.  As such, it may take long 
periods of time to determine the result of an interaction, that in reality happens in 
fractions of a second. This is a particularly important issue if a simulator is supposed 
to operate in real time, such as in a flight-training program. 
 
To reduce complexity, assumptions or simplifications are introduced to the simulation 
program.  However, although this can speed up the simulator, any simplification made 
decreases the accuracy of the simulation making the results less reliable. 
 

2.2 Simulation Methods 
When designing or implementing a simulator, various techniques can be used to 
model a system.  Traditionally, these are divided into continuous and discrete 
methods.  The technique used depends on how the system changes with respect to 
time. 

2.2.1 Continuous Modelling 
Continuous simulation models dynamic systems with the use of differential 
equations.[3]  To achieve this, the basic relationships between chosen state variables, 
need to be known in order to model the elements of the system.  The dynamic 
behaviour of the system is then calculated by either solving the differential equations 
or iterating from some start condition to produce data for the system over time. 
 
The relationships used for continuous modelling are typically convenient natural laws 
such as Newton’s laws of motion of Kirchhoff’s voltage laws.  Thus, a model of this 
form will be widely accessible and easily understood by people from the associated 
fields. 
 
Unfortunately, a continuous model is unsuitable for systems with more than a few 
thousand variables, as it is just too computationally expensive to calculate in any 
reasonable time.  Thus to simulate models of higher complexity a coarser level of 
detail must be used. 

2.2.2 Discrete Modelling 
Discrete models can be used whenever a system’s state changes instantaneously at 
discrete time intervals.  In reality, this is rarely the case as changes are not 
instantaneous, however if this can be approximated, discrete simulation offers 
considerable speed advantages over continuous. 
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There are two main techniques used for discrete modelling, event-driven and cycle-
based, (also known as event-by-event and epoch-by-epoch respectively) [4].  There 
are several variations that exist based on these ideas. 

2.2.2.1 Discrete Event-Driven Simulation 
An event is a change in state that happens at a particular time.  In discrete event-
driven simulation, the emphasis lies on updating the state of the system only upon the 
occurrence of events.  This is a good strategy, as it means that time is not wasted 
evaluating sections of the system or periods of time where nothing is happening. 
 
The main feature of an event-driven system is that of a global event queue.  As events 
are generated by the system elements, they are added to this queue for later 
processing.   
 
At each stage in the simulation, the events that occur next are removed from the front 
of the queue and processed.  Any elements that are affected by these changes from the 
events are then re-evaluated to produce further events. 
 
The event-driven method also has the effect that it automatically orders the evaluation 
of simulation elements due to the queuing system.  In a system where this ordering is 
important such as in analysing the behaviour of electronic circuits, elements are only 
evaluated after the previous ones have generated events. 

2.2.2.2 Discrete Cycle-Based Simulation 
Unlike event-driven simulation, which updates at the system at the occurrence of 
events, cycle-based simulation updates the entire system at regular intervals.  This has 
the advantage that the speed at which the simulation proceeds is directly related to 
time.  Additionally, since no central queuing process is required, this type of discrete 
simulation lends itself well to parallel or distributed architectures, with each process 
evaluating a single simulation element. This has resulted in the development of 
hardware simulation accelerators which utilise this method. 
 
Unfortunately, since each simulation element is only evaluated at each cycle, events 
that occur at other times may be ignored or lost.  Hence, a cycle-based simulation is 
unsuitable for a system involving lots of asynchronous behaviour, such as some 
electronic circuits. 
 

2.3 Electronics Simulation 
Electronics simulation is the process of simulating an electronics circuit.  Four basic 
levels of electronics simulation have been identified [5]: circuit level, gate level, 
register transfer level, and system level.  A simulation that combines more than one 
level is called a mixed-mode simulation. 
 
Circuit Level Simulation is the ideal form of electronics simulation as it aims to 
represent the analogue-waveform response of a circuit.  However, such an approach is 
highly computationally expensive. Circuit-level simulations typically run as a 
continuous simulation. 
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Components at circuit level, that comprise a logic gate, may be simplified in a gate 
level model which represents them as a single element.  This decreases complexity in 
several ways.  Firstly, the simulator now models fewer components and secondly, 
logic gates only respond to discrete logic levels thus considerably simplifying the 
representation of voltage.  
 
Register transfer, again groups components, this time assimilating gates into registers 
and thus incorporating the idea of state into the circuit elements.  Register transfer 
models will also respond to the same voltage levels as gate-level models and as such, 
the two are often grouped as logic-level simulations.  As the transitions between states 
in a logic-level simulation are nearly instantaneous, they can be assumed so, and are 
therefore suitable for discrete simulation. 
 
Logic-level simulation can be further subdivided into switch, gate, functional and 
behavioural levels [6]. 
 
Switch level falls just beneath the level of abstraction offered by gate-level simulation 
and considers circuits as collections of transistors and wires.  Transistors are then 
approximated as simple switches, with propagation delay in switching, and wires are 
modelled as zero-delay conductors. 
 
Functional-level models map onto the architectures functional blocks, and as such will 
be able to accept and produce the same values as the actual hardware.  It differs from 
gate models in the way that it can process data internally.  For example a comparator 
comprised of four single bit comparators must examine each binary bit to determine 
the larger of its two inputs, a functional model can just read the inputs as integers and 
carry out a single comparison. 
 
Behavioural level simulation only seeks to mimic the behaviour of a block of 
hardware and doesn’t necessarily have to achieve this in the same way as the 
hardware.   They give a general overview of the function provided by the hardware 
and allow the designer to experiment with higher-level solutions. 
 
System level simulation, unlike gate and register transfer levels, does not compose its 
models by grouping components from a lower level.  Instead, it is derived largely by 
abstraction of elements of the actual system, as such it is a form of behavioural 
simulation.  In terms of system level simulation, Breuer [6] describes the system as 
‘any work-performing entity or set of connected entities in the computer system, up to 
and including the latter.’  
 
In general, the systems built for the University of York’s electronic courses comprise 
of mostly digital systems, with analogue circuitry used only for the inputs and 
outputs.  Thus, a logic-level simulation would be most useful with perhaps some 
interfacing to a circuit-level system for IO.  As the major concern is the testing of 
circuits themselves, a behavioural or system-level simulation would not be of 
particular use here as the level of abstraction is too high. 
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2.4 Comparison of Existing Programs 
The capacity required from the simulator at the University, does not justify the 
licensing cost of commercial software.  Instead, free software is examined to meet the 
requirements.   
 
It is felt that it would be advantageous if the program offered an intuitive graphical 
interface instead of opting for textual circuit description, as the emphasis of the course 
is the circuit development, not the use of the associated simulator.  As such, ESIM [8] 
and similar programs will be discounted. 
 
There are already several freely available graphical logic-level simulators [9 – 24]. 
Current research [9] has compared these systems however, this has mainly been 
concerned with the interface function and further inspection is necessary. 

2.4.1 The Applications 
All of the identified freely available simulation applications offer a two or three state 
logic simulation, mostly using discrete event processing.  Therefore, there is not much 
that separates the relative power of the individual programs.   
 
The range of components offered by each package is also similar and include clocks, 
switches, light emitting diodes and flip-flops as well as the basic gates that are to be 
expected in such a program.  Multimedia Logic [21] stands out, as it features some 
interesting higher-level components such as a keyboard and terminal, however it does 
not have the range of components necessary for general circuit design. 
 
With the exception of Digital Simulator [15], which offers a plug-in architecture, none 
of the programs allow for easy addition of components via any method other than 
recompili ng of the application.  This is an important feature for an electronics 
simulator, due to the large number of available electronic devices, it should be easy to 
add new ones to a program when required, and should not require understanding of 
the entire program to do so. 
 
Of the sixteen applications under scrutiny, about half of these are able to run on 
multiple platforms, mostly through the use of Java.  Unfortunately, the only one that 
features addition of devices through a plug-in architecture runs solely on Microsoft 
Windows.  Thus if an easily extensible platform independent simulator is required, it 
will need to be designed from scratch. 

2.4.2 The Interface 
As stated previously the investigation into simulation applications [9] had already 
looked at the interface.  The research examined factors such as wire representation, 
variation with respect to numbers of gate inputs, operations such as saving and 
printing, and tried to gauge the ease of use offered by the various interfaces.  
However, the question was not raised as to whether the graphical metaphor, common 
to all the simulators was the most appropriate for the task.   
 
All the investigated non-commercial programs represent the circuits using either 
standard logic symbols (Figure 1 (a)) or ANSI/IEEE Std. 91-1984 symbols [26] 
(Figure 1 (b)).  This is useful in the design stages of circuit modelli ng, as these 
symbols are recognised internationally so make for good documentation of the circuit.  
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Hence, this type of interface is well suited to the simulation of circuitry for design 
testing.  However, this system is less applicable to a practical course as it does not 
show the actual form of the circuitry used in the laboratory. 

 
Figure 1: From left to right: (a) Logic diagram and (b) ANSI/IEEE Std. 91-1984 symbol for a 
SN7408 And-Gate Package 

 
Virtual Vulcan [25], a commercial circuit trainer simulated in software, experiments 
with a different graphical metaphor.  This piece of software uses computer 
representation of a real world objects and enables the user to utilise the software just 
like the real world trainer (Figure 2).  However although it does offer a reasonable 
selection of chips to experiment with, the program is limited to just a single 
breadboard which is insufficient for the circuits created in the Computer Science 
courses. 
 

 
Figure 2: Virtual Vulcan Interface 

 
The circuits designed and built for the University courses, although potentially 
complex, generally consist of a microprocessor and associated off the shelf 
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component packages.  Using either the standard logic symbols or the ANSI/IEEE 
representations, these devices tend to be represented by rectangular blocks.  Thus, an 
interface featuring representations of real world objects would not lose too much 
comprehensibility and instead, would produce a standard work environment between 
the laboratory and the software which reduces the amount of time it takes to switch 
between the hardware and the simulator. 

2.5 Project Aims 
The aim of the project is to design an electronics simulator for use in testing circuitry 
designs for students on the Chips to Systems course at the University of York.  To 
achieve this a discrete, logic-level simulation will be used to model the digital portion 
of the student circuitry. 
 
The program should run on at least Linux and Microsoft Windows operating systems.  
It should provide components typical of those used in the lab sessions such as the 
Texas Instruments SN74 range, light emitting diodes and switches and should feature 
an extensible system for the addition of further components as necessary.  Finally, it 
should aim to provide a graphical interface mimicking the environment of the 
electronics laboratory and will be fully tested and evaluated for its applicability to this 
environment. 
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3 Program Design 

3.1 The Tools 
The most important aspect to consider, when choosing the tools to create the program, 
is how to maintain the cross-platform nature specified by the requirements.  There are 
two main ways of achieving this; choosing tools and designing the program such that 
the application is easily ported between environments, or selecting an interpretive 
language such that the same code can be run on each environment. 
 
There are advantages of each method, namely that native code is executed faster than 
interpretive code, whereas with interpretive code you will only have to maintain the 
one code base.  However, usually it easy enough to design program code such that it 
is easily ported, thus the execution speed argument will often favour this method.  
This argument is not so strong for this application. 
 
One of the primary goals is that the application is graphical in nature.  Although there 
are many libraries for providing graphical output to non-interpretive languages such 
as C, it is much harder to find ones that provide good cross-platform support.  Often 
these require so many levels of indirection to provide a common interface, that the 
resulting speed would be similar to that of an interpreted language. 
 
The second problem with choosing the porting route is the wish to use some kind of 
plug-in architecture to provide extensibility to the types of components that the 
program supports.  If the main application is ported then it must be ensured that all the 
plug-ins are also transferred.  Thus, the solution must lie with an interpretive 
language. 
 
Several interpretive languages exist that also offer graphical toolkits.  TCL/TK and 
Java are probably the two most popular, and as such will be the best candidates for the 
work as it will be easier to find support, in terms of both documentation and available 
interpreters.  TCL/TK and Java in particular provide another benefit over certain 
interpretive languages, as it is possible for applications created in both of these 
languages to run through an appropriately configured web browser.  This facilitates 
program deployment, as only the one copy of the software needs to be kept, being 
accessible to any number of computers through the Internet.   
 
Java has the advantage over TCL/TK, as it is an object-orientated language, which 
transfers well to circuit simulation, as it is natural to think of circuit components as 
objects.  It is for this reason that Java is selected in preference of TCL/TK, for 
although there exists object-orientated extensions to TCL/TK, these are less popular 
and less well supported than standard TCL/TK and Java.  
 
Java offers two graphical application programming interfaces, AWT and Swing, 
which offer rich ranges of ready-made graphical components.  Swing was chosen for 
the graphical implementation, for although AWT currently has better support through 
web browsers, Swing is rapidly growing in popularity and features the more advanced 
feature set [27]. 
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With the tools chosen, the program can now be developed.  A very top-down 
approach is taken towards this piece of software, starting with the innovative 
graphical user interface, and moving on to the backend after this is mostly complete. 
 

3.2 Graphical User Interface 
Taking inspiration from the Virtual Vulcan interface, it must be extended to support 
multiple boards and to allow a wider range of components to be placed on the boards 
themselves, as the laboratories do not use logic trainers as featured in its interface. 
 
In this section, the importance of getting the methods for the placement of wires 
correct is examined together with details of the various methods tested. 
 

3.2.1 The Breadboard Metaphor 
In the student labs circuits are composed on multiple breadboards (also know as plug 
boards) (Figure 3).  These feature internal connections (Figure 4) so that no soldering 
is necessary thus allowing rapid prototyping of circuits.  The breadboards themselves 
offer a convenient way of partitioning the circuitry, allowing sub-circuits to be built 
up on separate boards and then combined in the final implementation. 
 

 
Figure 3: The Breadboard 

 

 
Figure 4: The Breadboard with internal connections shown 

 
An intuitive interface will want to mirror this way of working.  As well as requiring 
multiple breadboards in the workspace at any one time, the boards themselves should 
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be able to be repositioned within this space so that boards with associated circuitry 
can be appropriately placed. 
 
When creating circuits; selection, movement, placement and removal are the basic 
physical operations available to a person for interacting with objects, and these 
translate easily over to their computer equivalents in a typical mouse driven 
application.   

3.2.2 What’ s in a wire.  Part 1.  Drawing Connections 
Wires form the primary type of connection in the circuits.  With circuits that require 
many connections, it is important that these can be created and modified easily.  There 
are two important aspects here, the graphical appearance of the wire and the way in 
which the user is required to interact with the system to add wires to the circuit. 
 
Again, the primary influence was Virtual Vulcan.  Unlike the other graphical 
simulators that draw wires as narrow lines, Vulcan makes them appear closer to real 
wires, and gives the user choice of colouring, to allow wires of similar function to be 
visibly grouped.  To be consistent with the chosen metaphor, this approach must also 
be taken. 
 
Unfortunately, Virtual Vulcan’s method for placement of wires is less satisfactory.  
This requires the user to hold down the mouse button while dragging. The path of the 
mouse describes the path of the wire.  When describing the wire with the motion of 
the mouse, it is difficult to keep to a straight line causing the results to look untidy.  
Therefore, other options are investigated. 
 
The most basic notion is that a wire can be represented in a straight line between the 
two points to be connected.  This is easily implemented by rotation and scaling of a 
wire graphic.  However, again there are issues.  In a circuit with several wires, it is 
likely that using this method will result in wires crossing each other as well as the 
components, which makes the circuit appear cluttered and difficult to understand. 
 
This method also raises an implementation issue.  An object in Java that receives 
input from the mouse will be able to receive it in an area of a rectangle whose extreme 
corners would be determined from the endpoints of the wire (Figure 5).  Therefore, if 
it is wished to use mouse interaction on the wires as well as other objects, a wire that 
does not visually conceal a component, may still interfere with the user interacting 
with it. 
 

 
Figure 5: A diagonal wire, its influence on the mouse and how it may interfere with a component 
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The obvious restriction to make is, to only allow wires to be only completely 
horizontal or vertical.  Connections can then be made by using the internal 
connections on the breadboard and multiple wires to describe the required path.  It 
now becomes much easier for the user to customise the path of the wiring, allowing 
circuits to become more readable.  However, many times more wires are required to 
achieve the same task. 
 
Having to create these additional wires is both frustrating to the user and may increase 
the complexity of the circuit for simulation.  Thus, it is necessary to replace these 
collections of wires with a single wire, which although still travels only horizontally 
and vertically, can now be bent to switch the direction of travel mid-wire.  
Conveniently, this is how well disciplined circuits should be created in the 
laboratories thus returning to the idea of mirroring real life practice in the software. 
 
In fact, it would be possible to go much further, by taking the onus of routing wires 
away from the user and performing this operation automatically.  However, as well as 
deviating from the metaphor of representing real world practice, this is complicated to 
achieve as it will require path finding algorithms to avoid components that must be re-
evaluated for all the wires when extra components are added or moved.  This could 
also present a problem when a wire has to be repositioned because of a component 
having been adjusted, as the sudden change of the wire position could confuse a user. 



 

 - 13 -  

 

3.3 Simulation Engine 
Having decided on the format of the user interface there is a need to design the 
simulation portion of the program and ensure that it interfaces with the front-end.  
Decisions are made as to how connections will be represented and what these will link 
to.  There is also a need to formalise the representation of events for the simulation 
together with how these interface with devices. 

3.3.1 Nodes in the circuit 
Before dealing with making connections, an understanding of exactly what is being 
connected is needed.  The usual approach, taken with circuit simulators, is that 
circuits are represented as undirected graphs with devices as nodes, and connections 
as the graph’s arcs.   
 
However, the circuits are created on breadboards, which affects this representation.  
Wires connect to the breadboard’s sockets and not the components themselves.  This 
means it is possible to have portions of circuit that are not yet connected to any 
devices.  These still need to be included in the representation so that they may be 
probed appropriately. 
 
Thus, the nodes in the circuit graph will represent the sockets on the boards, for a 
connection will always be to a socket and sockets may then be attached to the devices. 

3.3.2 What’ s in a wire. Part 2.  Simulating Connections 
Having decided what the basic units in the circuit are, there is now a need to represent 
connections between them.  Connections can be both wires, drawn by the user, and 
the internal connections on a breadboard. 
 
Each socket will contain, within it, a representation of its electrical potential.  It will 
be assumed that wires have no resistance to keep the model simple.  A connection can 
therefore be modelled as the unification of two nodes potentials. 
 
The obvious data structure for this model, is that of a set, as unification is a standard 
set operation.  However, although the creation of connections then becomes trivial by 
unifying sockets potentials, when removing connections, information about which 
sets of sockets were unified, by the deleted connection, will also be needed, so they 
may be separated again.  A solution to the problem may be to create the sets when 
simulation starts, however, in a circuit with many connections this operation will 
become computationally expensive, additionally to simulate switches during 
simulation some form of dynamic structure will be necessary to avoid further 
reforming as connections are made and broken.  Thus, a different data structure is 
required. 
 
By noting that each connection will always unify exactly two sets, it is possible to 
represent a connected set of sockets as a binary tree.  Each element of the tree has two 
children, which represent the two sets that are connected.  Thus, the leaf nodes will 
contain the actual sockets, as they are the basic node type in the model.  Connections 
may now be formed by creating a new root node whose children are the two trees to 
be unified.   
 



 

 - 14 -  

 

Deletion of a connection is now the separation of sub-trees.  However, removal in this 
way will break the connection between the deleted nodes ancestors and its leaves.  
Thus, after removing a node from the tree its ancestors will have to be updated.  This 
is achieved by storing, at each node in the tree, the two sockets that it physically 
connects.  When a connection is removed, its ancestors in the connection tree will also 
be removed and then reattached to the new roots of its two sockets’ trees and thus 
correctly rebuilding connections. 

Figure 6: Creating and Removing Connections  

Figure 6 shows the proposed solution in action.  Initially A and B are connected.  The 
new connection is then made between A and C.  This appears in the data structure as a 
new root that connects C to the parent of A and B.  The initial connection is then 
removed.  This leaves A and C connected incorrectly.  The ancestors of the removed 
connection are then updated, repairing the connection between A and C. 
 
The structure can be extended so that each node in the tree stores its own potential.  
The propagation of the potential up the connection tree to the root, means that when 
one of the leaves is changed, will result in all nodes on the path to the root receiving a 
copy of the potential from that source.  Thus, connections may now be broken during 
simulation and leave the newly created sub-trees pointing to the correct potentials, 
without having to recalculate from all the leaves.  This will allow switches to be 
added without considerably adding to the complexity. 

3.3.3 The Device Model 
Before design of the simulation can begin, an understanding of the devices to be 
simulated is needed.  A device is an object that performs a function.  In terms of 
electronics, a device also features inputs and outputs for connection to the rest of the 
circuit.  While the function will be different for each device, a common representation 
is required for these ports. 
 
Formally, the ports of the devices are what connect them to the board sockets.  Both 
the socket and the device will need to register the connection.  The socket needs to 
store the device that is connected to it whilst the device needs to be able to read and 
write values to the socket. 
 
A port may also take one of several types and initially the following are identified: 
input, output and input/output.  These are interesting for two reasons, firstly, it would 
be useful to limit undefined behaviour in the simulation by not allowing connections 
between multiple outputs.  Secondly, keeping track of the port types could also be 
used to check that models added to the system are not performing illegal operations 
such as writing to an input port. 
 
The port’s type can be stored in the sockets and connection trees.  By propagating the 
type up the trees when new connections are made, it is possible to tell if any outputs 
are already in the connected set so that the user can be informed if it tries to connect 
multiple outputs.  Enforcing this behaviour necessitates the introduction of two 

A 
B 
C 

A 
B 
C 

A 
B 
C 

A 
B 
C 



 

 - 15 -  

 

additional port types; not connected and open-collector outputs. The not connected 
type is required to indicate when a connected set does not connect to any devices by 
storing this value at sockets with no connection.  Open-collector outputs are a special 
type of output that do not produce undefined behaviour upon connection, thus the 
distinction from the regular output type is required to allow circuits with connected 
open-collectors. 
 
The device model can be implemented as a Java interface.  By forcing the actual 
devices to extend from this, it is ensured that there is a common method for access to 
all of them. 

3.3.4 The Chip Model 
A plug-in based architecture is required for the chips so that the program is easily 
extensible.  However, to ensure that the user can interact in the same way with each of 
the chips their device models must be identical.  Therefore, an extra layer to 
parameterise each chip and provide its function is required, known as the chip model. 
 
Modular simulation programs often use a Hardware Descriptive Language (HDL) for 
specifying components.  There are many different HDLs but the most commonly used 
are Verilog and VHDL (Very high speed integrated Hardware Description Language).  
Both have open specifications allowing for an interpreter to be added to the program, 
but HDL implementations of devices, although vast in number, are often 
commercially based and costly.  Additionally, both languages are large so writing a 
full interpreter for either is beyond the scope of this project. 
 
Instead of using a HDL, Java was chosen.  This removes the necessity for producing 
an interpreter for the plug-ins, as the Java compiler will do this.  The result can then 
be loaded using Java’s dynamic linking facility.  This method is also beneficial, as it 
simplifies the design and implementation of the program as a common language is 
used throughout.  A further advantage is that if a HDL is required at a later stage, then 
an interpreter can be created as a Java plug-in.  This opens up the possibility of 
supporting multiple HDLs, and therefore, providing greater numbers of components 
for the application. 

3.3.5 The Discrete Simulation 
The discrete simulation must be of an event-driven type because it cannot be 
guaranteed that circuits created by students will not exhibit asynchronous behaviour.  
Additionally, to enable accurate behaviour of the circuit elements with respect to time, 
a multiple delay model is required to model the various gate delays. 
 
Therefore, the basis of the simulation is a time ordered event queue.  The nanosecond 
is chosen for the unit of time as inspection of typical device datasheets [28] indicates 
delays of multiples of nanoseconds.   
 
The simulation will initially only represent three states, low and high logic values 
together with a value representing that the node is not connected.  Not connected is an 
unusual value in logic simulations, as generally circuit components are automatically 
connected to power supplies, so always output a legal value.  However, because of the 
chosen graphical interface, components must be connected manually to power rails by 
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the user, which provides a condition where devices are not necessarily connected and 
their outputs must be able to reflect this. 
 
To start the chain of events processing initial events are required to initialise the 
circuit.  By modelling power supplies, initialising these is enough to start the event 
process, as it will cause all devices that are connected to the supplies to be evaluated. 
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4 Implementation 
The Java Digital Breadboard Simulator comprises of over six thousand lines of code 
and over 27 classes for the main program alone.  As such, the entire implementation 
will not be covered here and instead the focus will be on the more interesting and 
important aspects of the program.  
 

4.1 User Interface 
Figure 7 shows the implementation of the main program window, including at least 
one of each type of component. 
 

 
Figure 7: The main program window 

 
Almost all interaction in the program is through this main window, with the only 
exceptions being the dialogs to select chips, colours of wires, and the help system.  
Thus, the main window is the most important graphical interface of the program and 
is described in further detail below. 
 

1. The Menu.  A standard component of most graphical user interfaces, the menu 
provides the user with the possible commands for the application.  Keyboard 
accelerators are provided for the more common options to speed the user in 
their working.  The functions provided by the menu are documented in the 
program’s user guide available through the help menu.  The user guide can be 
found in appendix 8.1 

 
2. The Toolbar.  Another common component in many graphical interfaces the 

toolbar provides easy access to the more common menu options.  The toolbar 
also provides a slider for controlling the speed of the simulation.  The toolbar 
is detachable and can be placed appropriately for the users convenience.  The 
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button actions are documented in the program’s user guide available through 
the help menu.  The user guide can be found in appendix 8.1 

 
3. The Selection Pane.  This panel provides useful information about the 

currently selected component, including pin diagrams for the various chips.  
The selection pane makes the creation of circuits much easier by providing a 
useful on screen reference. 

 
4. A Dipswitch Component.  These are the only types of switch available in the 

Java Breadboard Simulator, although they come in several sizes.  They are 
controlled by the mouse. 

 
5. The Status Bar.  The status bar is used to communicate messages to the user.  

These include things like on screen instructions for wire drawing and to show 
the current time in the simulation. 

 
6. Wires.  Wires are created with the mouse by selecting wire mode, from the 

menu or toolbar, then clicking on a hole on a breadboard.  They may only be 
drawn horizontally or vertically but can be bent to provide any required path.  
The wires colour is selectable from the menu and is customisable with a 
colour chooser. 

 
Unlike devices, which are added onto the boards, wires are drawn on a layer 
above the boards allowing them to leave the board’s boundaries and connect to 
other boards. 
 
The wire drawing method, as described in the design section, was extended to 
allow mistakes to be more easily corrected.  During the drawing of a wire, 
pressing the escape key undoes the last bend that was inserted in the wire.  
Further presses unravel more wire allowing any part to be repositioned.  
 
A second extension to the wire drawing method enables wires, that have 
already been placed, to be editable via a double click on either end.  This then 
reinitiates the wire drawing mode continuing from the selected end. 
 

7. Probe.  A device that produces a trace of the simulation.  The output from 
probes can be imported into a statistical package, such as Microsoft Excel,  to 
assist in analysing the circuit. 

 
8. Chip.  The chip component can draw a chip with any number of pins and two 

different widths according to its underlying model.  A variety of chips are 
initially provided. 

 
9. LED.   Light Emitting Diodes are the main output devices for the simulator.  

Like real LED these are useful for viewing the status of parts of the circuit.  
Unlike real LED they do not require current limiting resistors to protect them.  
LEDs are available in red, yellow and green. 

 
10. The Breadboard.  Breadboards are used to build circuits on.  As many 

breadboards as required may be used.  They are placed automatically upon 
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insertion in the circuit, but providing they are not connected to other boards by 
wires, they can be moved freely. 

 
For convenience, breadboards come pre-connected to the power supplies with 
+5V (logic high) along the top rail and 0V (logic low) on the bottom. 

 
11. The Circuit Pane.  This is the main working area for the Java Breadboard 

simulator.  When the circuit gets too large for the panel, scrollbars are added 
to enable further expansion. 

 
All devices including boards can be selected with a mouse button press and 
can be moved by dragging the mouse.  No assumptions are made to the 
dominant hand of the user or the number of buttons featured on their mouse, 
therefore all mouse interactions in the circuit pane can be performed with any 
mouse button. 

 
12. The Logic Probe bar.  During the simulation, clicking the mouse on the board 

sockets will produce a reading in this area.  This is useful for debugging 
circuits, by reducing the need to add LED to all points in the circuit. 

 

4.2 The Simulation 
It has been shown [29] that with the chosen model it is possible for a new event to be 
scheduled before an existing event at the same node.  In such a case, the old event 
must be cancelled to prevent its processing leaving the circuit in an incorrect state.  To 
account for this effect, a queuing algorithm has been implemented, to first remove all 
events that occur after the new event that are scheduled at its node. 
 
The event-driven simulation allows for three modes of operation: Stepping and 
animating continuously are controlled by the user via the interface whilst running for 
a specified time assists in the creation of animation. 
 
Stepping through the simulation is the most basic type of event operation and is used 
in building the other two modes.  Stepping the simulation results in only the next 
events being processed, so allows for the most finely spaced events to be watched. 
 
The ability to run the simulation for a specified duration is not an option available to 
the user, but instead is used to build the continuous animation mode.  The simulation 
is stepped until the specified duration has passed or there are no more events to be 
processed.  Simulation runs in less than real time, thus simulating a long (in the order 
of seconds) will therefore take a considerable time to process causing the program to 
appear to freeze.  A time-out of one millisecond is imposed to keep the animation 
flowing.   
 
Animating the circuit allows the user to view the operation of the circuit over time.  
This method utilises the Java Timer class to run the simulator for a variable length of 
time.  The rate of simulation is specified by the slider component in the graphical user 
interface.  Animation relies of regular calls to the run-for-duration method described 
above, so if the speed is set too high, such that the computer cannot cope with the rate 
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of simulation, the run method will time out and instead of achieving the selected 
speed the simulation will proceed only as fast as is possible for the host computer. 

4.3 Chip Models 
As previously mentioned, chip models are implemented in Java.  Once compiled the 
models can be loaded into the program with a call to Class.forName(String), which 
finds the specified class file and links in the code.   Thus, the implementation is 
concerned with creating an interface for these Java class files. 
 
The interface consists of sixteen Java methods that must be implemented for each 
model, which control the simulation, appearance, description and derivatives of the 
chip as shown below: 
 

package jbreadboard.v1_00; 
public interface ChipModel {  

public void setAccess(jbreadboard.ChipAccess a); 
 
 //simulation 
 public void simulate(); 
 public void reset(); 
 public String getPinType(int i); 
 
 //appearance 
 public int getNumberOfPins(); 
 public boolean isWide(); 
 public String getChipText(); 
 
 //description 
 public String getDescription(); 
  public String getManufacturer(); 
 public String getDiagram(); 

 
  //derivatives 

 public String[] getDerivatives(); 
 public int getDerivative(); 
  public String[] getPackages(); 
  public int getPackage(); 
 public void setDerivative(int t); 
  public void setPackage(int p);  
} 

 
There are three methods concerned with simulation.  The simulate method is most 
important for the interface as its body provides the function of the chip.  It is called 
each time the signal at one of the chip’s input pins changes.(determined by the 
getPinType(int) method)  
 
The reset method is called when the simulation is reset.  This method allows for any 
state variables associated with the model to be initialised appropriately at the start of 
simulation. 
 
The interface provides three methods for limited control of the appearance of the chip.  
It is possible to specify the number of pins, one of two different widths and the text to 
appear on top of the chip.  Specifying the number of pins is particularly important, as 
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the simulation will be checking that the model is only accessing valid pins during 
simulation. 
 
The description methods provide the information seen in the selection pane of the 
application.  The diagram returned from the getDiagram() function is especially useful 
as it provides the diagram for the selection pane that enables the user to see how the 
chip should be connected in the circuit. 
 
By allowing chips of the same basic type, with possibly different pin assignments or 
timing in the same class, the derivatives methods vastly reduce the number of 
implementations required to model a range of chips.  
 
To provide the chip implementer with a standard method of accessing the program 
interface a second class was created.  This is called the ChipAccess class and is 
passed to the chip model via its setAccess method shortly after an instance of the chip 
is created.  As well as providing methods to allow the chip implementer access to 
write values through the pins, the ChipAccess class also provides them with the 
current simulation time and methods for loading and saving data.   
 
In addition to providing methods for the implementer, the ChipAccess class also 
features a more subtle secondary role.  The ChipAccess class is the only object from 
the main application that the chip model can identify and it does not provide any 
further way of accessing the rest of the application.  The result is that the ChipAccess 
class insulates the application from the effects of a rogue chip model. 
 
The procedure for creating new chips is therefore as follows.  Each chip is created as 
a separate class that must implement the ChipModel interface.  This file must be 
declared in package chips to allow the simulator to be able to find the file once 
compiled, which is achieved by adding the line “package chips;” to the top of the file.  
This file may then be compiled with the command: 
 

javac –classpath jbreadboard.jar NEWMODEL.java 
 
where NEWMODEL.java is the name of the chip model Java file to be compiled and 
jbreadboard.jar is the jar archive containing the ChipModel interface which can be 
found in the Java Breadboard Simulators distribution package.  The successful result 
of this operation is the production of a class file.  By placing this in the chips directory 
of the Java Breadboard Simulator it will be found when the application is restarted. 
 
To accompany the initial release of the Java Breadboard Simulator, forty chips from 
the Texas Instruments SN74 range, typical of those used in the laboratories, were 
implemented.  Two example implementations, those of the SN7400 and SN7470, can 
be found in appendix 8.2.  The SN7470 implementation is of particular interest as it 
shows how both state and edge-detection can be implemented. 
 

4.4 Signal Tracing 
Producing a waveform output of the circuit is a useful way of getting a good view of 
how it changes over time.  The Java Breadboard simulator does not feature its own 
graph drawing code and instead relies on other applications to draw traces for it. 
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To achieve this, it outputs a comma delimited file suitable for import into most 
spreadsheet packages.  The first line of the file gives column labels for time followed 
by the probes in the circuit.  The following lines start with the time value, then the 
value for each probe at that time in the order they were specified in the first line.  The 
current probe values can be –1,0,1 for not connected, low and high respectively. 
 
An example trace file is therefore: 
 Time, Probe0, Probe1, 
 0, -1, -1, 
 1,  0, 1, 
 50,  1, 1, 
 100,  0, 0 

0 50 100 150

Time(ns)

Probe0

Probe1

 
Figure 8: Example trace from Microsoft Excel 

As can be seen in Figure 8, Microsoft Excel does not produce the sharp transitions 
expected in a digital circuit with this data.  Therefore, an option was added to the 
program to modify the trace output such that both the previous and current values are 
given at each time step. 
 
The new trace file is thus: 
 Time, Probe0, Probe1, 
 0, -1,  -1, 
 1, -1, -1, 
 1,  0, -1, 
 50,  0, 1, 
 50,  1, 1, 
 100,  1, 1, 
 100,  0, 0 
 
Figure 9 shows the resulting graph.  

0 50 100 150

Time(ns)

Probe0

Probe1

 
Figure 9: Improved example trace from Microsoft Excel. 
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4.5 Loading and Saving 
By default, the Java Plug-in will not allow an applet to access data from the system on 
which it is running.  This is to ensure that malicious code cannot harm the user’s 
system.  However, this also means that the simulator cannot perform operations such 
as loading and saving without each individual user granting permissions for the 
application.  Java provides us with the abili ty to check if the relevant permissions are 
set for the application and so users can be told how to enable loading and saving if the 
permissions are insufficient. 
 
Java permissions are granted with the use of a policy file.  This is called “.java.policy”   
and is placed in the users home directory.  Adding the following lines to the policy 
file will grant the Java Breadboard Simulator access to the file system: 
 

grant codeBase "http://www-student.cs.york.ac.uk/~njg103/-" { 
  permission java.util.PropertyPermission "user.home", "read"; 
  permission java.io.FilePermission "<<ALL FILES>>", "read, write"; 
  permission java.lang.RuntimePermission "modifyThread"; 
}; 
 

Although strictly the only the FilePermission is necessary to read and write files, the 
other two permissions are required by the Swing JFileChooser component. 

 
Not all users will necessarily trust the application with file access so the Java 
Breadboard Simulator provides an alternative.  With different permissions, the user 
can grant the Simulator the abili ty to read and write to the system clipboard, which is 
a potentially less dangerous operation.  The policy entry for this is: 
 

grant codeBase "http://www-student.cs.york.ac.uk/~njg103/-" { 
  permission java.awt.AWTPermission "accessClipboard"; 
}; 

 
If the program detects that it has clipboard access but not file access then instead of 
presenting the user with a file chooser to load or save the file, a text component is 
shown to copy and paste the content of files.  If both options are available the 
simulator defaults to the file chooser method. 
 
Although inconvenient for basic file operations, the Java security model is particularly 
useful for the simulator’s chip plug-in system.  In terms of granting permissions, 
separate policies may be created for each plug-in, allowing new untrusted plug-ins to 
be safely tested on the system before their widespread use is allowed. 
 
The abili ty to save via clipboard operations dictates that the circuit file format is 
textual rather than binary because binary data may not be reliably sent via the 
clipboard.  Saving the circuit is used to preserve the elements of that circuit, so the file 
does just that, by listing the components and their positions.  Each line of the file 
specifies a separate component. 
 
The line starts with one of four basic types, Board, Device, Probe and Wire, followed 
by their parameters.  Boards and devices are parameterised both by the Java class for 
the object and their x and y coordinates, with extra parameters on a per class basis.  
Probes have a label and coordinates.  Parameters for wires are their red, green and 
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blue (RGB) colouring followed by pairs of numbers indicating the coordinates that the 
wire passes through.  Devices are specified after the board that they are on and Wires 
are the last objects in the file. 
 
The following file sets up a clock on a breadboard with a LED and a probe.  The line 
numbers are added for the description that follows. 

 
1 Circuit 
2 Board jbreadboard.BreadBoard 0 0 
3 Device jbreadboard.Chip Clock 0 7 76 72 
4 Device jbreadboard.LED 84 128 0 
5 Probe "probe0" 84 104 
6 Wire 255 0 0 76 16 76 40 
7 Wire 0 255 0 92 152 92 128 
 
Line 1 specifies that this is a circuit file. 
Line 2 indicates for a board implemented by jbreadboard.BreadBoard to be added to 
the circuit at (0,0). 
Line 3 adds a chip device with model Clock.class and derivative 0 package 7 to the 
coordinates (76,72) on the above board. 
Line 4 adds an LED of type 0 (red) to the above board at (84,128). 
Line 5 adds a probe labelled “probe0” to the breadboard at (84, 104). 
Line 6 specifies a wire with RGB colour 255,0,0 (red) that starts at (76,16) and ends 
at (76,40) 
Line 7 is another wire, it has RGB colour 0,255,0 (green), starts at (92,152) and 
finishes at (92,128) 
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5 Evaluation of Program 
Evaluating the program was broken down into two main tasks: ensuring the 
correctness of the simulation and assessment of the user interface.   

5.1 Simulation Validation 
Testing of the simulation end of the application started with the most basic elements; 
the connections and the devices, and then gradually built up to more interesting 
circuits. 

5.1.1 Connection Verification 
Ensuring that connections can be properly made is a trivial, but important, stage of the 
testing procedure.  If the connections do not function correctly then it is not possible 
to rely on any other tests carried out, for even the most basic of circuits will require 
connections.   
 
In order to test the connections, wiring and switches were added to a board and 
connected to both power rails and other wiring components.  It was necessary to 
ensure that when the simulation was initialised that the values at the rails could be 
read at the other ends of the wiring connected them and that toggling switches made 
and broke further connections.  Results of numerous combinations showed that the 
connections behaved as expected allowing any number of wires to reliably function. 
 
It was also necessary to test that the program would not be able to introduce 
undefined behaviour into the circuit by allowing connections between different 
outputs.  This was verified by trying to add wires and switches such that the supply 
and ground rails are linked.  The application did not allow such connections, 
removing wires and not allowing a switch to toggle, if this resulted in outputs being 
connected. 
 
Satisfied that the connection mechanisms seemed reliable the various devices 
available to the user were then tested. 

5.1.2 Devices 
A large number of devices were tested however, as the current selection of chips does 
not feature many inputs, it was possible to thoroughly test all input combinations of 
each of the 40 chips.  The results of this test showed correct operation was achieved. 
 
Another consideration with the device models was that they exhibit internal 
consistency as well as functional correctness.  If a pin is either declared as an input or 
not connected, the model should then not be able to write to it as an output.  The 
results of testing showed the program was able to detect this type of error, putting a 
warning on the screen detailing the inconsistency, and terminating the simulation run.    
 
Testing of all input combinations has shown the program accurately highlighted any 
inconsistencies. 

5.1.3 Circuits 
By using circuits of well-documented behaviour as tests, it was possible to verify that 
the simulator functions on a larger scale, with correct timing and behaviour.  As such, 
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a number of test cases were created to assess various aspects of the simulation.  
Circuit diagrams and screen shots of the test circuits can be found in appendix 8.3 
illustrating the correct function of the program. 
 
A basic combinatorial circuit was first used to test the simulator.  A two-input 
exclusive-or circuit was set-up using the program.  By running the simulator and 
trying all four input combinations (00, 01, 10, 11), it was possible to determine the 
state table (Appendix 8.3) for the circuit and verify that it matched that of the 
exclusive-or function. 
 
Having verified basic combinatorial operation, more complicated circuits, which are 
harder to analyse, were then tested.  This meant testing circuits that incorporated 
feedback, so flip-flops were created to test how the simulator coped. 
 
The first feedback circuit examined was that of cross-coupled nand gates.  This forms 
the most basic type of bistable the not-s not-r flip-flop.  Running the simulation, it 
was again shown that the derived state table is that of the specified circuit.  More 
interestingly, it is known that the not-s not-r can be made unstable by setting both 
inputs low and then high simultaneously creating an oscillation in the circuit.  The 
simulation also confirmed this behaviour.   
 
The second circuit featuring feedback tested, was a positive edge-triggered d-type 
flip-flop.  This circuit combines three not-s not-r bistables into the single d-type flip-
flop and testing it ensured that the simulation still behaves well with both feedback 
and increased complexity. 

5.1.4 Timing 
Having tested the simulators ability to handle complex behaviour it was also 
necessary to check that timing is modelled correctly.  These tests were conducted 
using circuits whose timing properties are easy to analyse.  Circuit diagrams and 
screen shots for these circuits can be found in appendix 8.3. 
 
The first circuit tested had the function output = (Clock NAND (NOT Clock)).  This 
function should always evaluate to true, however due to the propagation delay 
through the Not gate the actual circuit will not.  When the clock rises from logic low 
to logic high both the clock and the output of the not gate will be high until after the 
not gate switches low.  This will in turn send the Nand gate low.  This behaviour was 
visible in the simulation in terms of the LED flicking off briefly.  A plot of the saved 
trace (Figure 10) confirmed this behaviour showing the delays on the gates.  
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Figure 10: Timing analysis of circuit 

The second timed circuit created an asynchronous four-bit binary counter.  The circuit 
was created with four identical SN7470 JK-flip-flops set up to toggle and therefore 
divide the clock input by two.  The propagation delay for one of these is 50ns, thus 
the propagation delay through all four flip-flops, for the most significant binary digit, 
is four times this.  For the circuit to achieve the correct state while the input clocking 
pulse is still high the clock must be high for at least the length of this delay.  
Therefore, the minimum input clock period, assuming an even mark-to-space ratio, is 
400ns giving a maximum clocking frequency of 2.5MHz. 
 
Setting the input clock to 2MHz (Figure 11) and stepping through the simulation the 
circuit always achieved the correct output while the clock was high.  However, by 
increasing the frequency to 3MHz (Figure 12) the most significant bit did was not set 
until after the clock input had dropped as expected. 
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0 500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

Time (ns)

bit-3

bit-2

bit-1

bit-0

clock

 
Figure 11: 4-bit counter with 2MHz input 

4-bit counter at 3MHz
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Figure 12: 4-bit counter with 3MHz input 

5.1.5 Other Behaviour 
The design had allowed for device models that can include both open-collector and IO 
ports.  None of the tests already covered had checked that these can be simulated 
successfully.  Unfortunately, no devices that required IO were initially identified to be 
implemented so it was not be possible to verify that IO ports connected together will 
function correctly.  This will require further work in the implementation of devices 
that feature IO to be tested. 
 
To verify open-collector functionality SN7407 buffers were used because they feature 
open-collector outputs.  By connecting the outputs together, a “wired-or” circuit was 
created performing the function of a standard Or-gate (Appendix 8.3.6).  As with 
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testing the devices, this was checked by going through all input combinations.  
Furthermore, this was confirmed to be extensible to multiple open-collector 
connections by then increasing the number of buffers in the circuit. 
 
The results showed that with the exception of IO behaviour, for which it was not 
possible to test, the Java Breadboard Simulator behaved correctly for all types of 
circuit that it is possible to create. 

5.2 Interface Evaluation 
It is impossible for a designer to personally evaluate the interface of a piece of 
software as they will already be aware of all the various intricacies of the program and 
are thus biased towards it.  Therefore, to properly assess the software students that 
have already completed the relevant courses were asked to evaluate the interface. 
 
The students were asked to comment on ease of use and the feature set and to report 
any problems.  They were also asked whether they felt the application would have 
been of use in their electronics courses.  
 
In general, the program was well received and few bugs were reported.  Problems that 
were mainly related to extensions in the wire drawing procedures have since been 
fixed.   
 
Several students reported that they had no difficulties in creating and testing circuits, 
although on-screen instructions were appreciated for wire drawing, which was 
initially considered less intuitive, though with a little practice became easy to use. 
 
Some problems were registered in realising that the breadboards came automatically 
connected to power supplies, as this is not actually stated until the user guide is read.   
 
Board power supplies were also seen to be a problem to students who liked to connect 
separate board rails together to ensure that they receive common power and 
grounding.  The application sees the rails as separate outputs and therefore does not 
allow them to be connected. 
 
Some complaints were made over the operation of the switches.  Users suggested 
preference towards different switch interaction methods such as dragging the switch, 
clicking on the switch instead of the gap or registering any click on switch or gap as a 
toggle.  
 
Circuit probes were found to be the hardest components to use as they were only 
documented in the on-line help pages, which the students seemed reluctant to use.  
Those that managed to get as far as exporting probe data did not find that spreadsheets 
were well suited to producing the right type of graph easily. 
 
Feature-wise no comments were received so it is assumed that the general opinion 
was that the application offers an acceptable feature set, which can only grow as more 
components are developed.   
 
Many comments were received stating that if the application had been ready for this 
years courses that it would have been a useful tool for those students. 
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6 Conclusions 
There are several strengths associated with the Java Breadboard Simulator. 
 
Firstly, the extensibility of the chip model by the easy addition of further devices 
using a plug-in method allows the program to be highly applicable to the University’s 
courses, permitting changes to course structure and the introduction of newly 
developed chips.  This will ensure the long term usefulness of the program. 
 
The interface is designed to be intuitive which again makes it applicable for 
University use as does not require expertise and keeps the focus on the actual system 
design, the fundamental part of the electronics course.  The ease of use was confirmed 
by the testing conducted by students. 
 
The simulation was shown, by testing, to work correctly and will therefore be a 
reliable method of testing circuits. 
 
Further applicability to University use was provided by the ability of the program to 
be run through a web page.  This prevents the need to install the program on vast 
numbers of student workstations. 
 
The simulator should also be of use to other academic institutions, running similar 
courses, where licensing costs are not viable for the purchase of commercial software.  
Also, based on the research conducted as part of the study it appears as though web 
based Java systems are relatively unique in commercial environments and hence the 
simulator may be useful for retailers of electronic components, allowing their 
prospective customers to experiment with their products on websites before purchase. 
 
Several problems were identified.  Firstly, the lack of a graphical facility within the 
program reduced the efficiency of the application, as production of graphs which is 
vital for analysis of circuit performance, can only be achieved by transfer of data to a 
statistical package which is both complicated and time consuming. 
 
A problem highlighted by testing was the dislike, by some students, of the current 
method in which interactions with switches occurs.  This is to be expected due to the 
number of different methods available [30] however, a consideration for further work 
might be a method by which the interaction mode with switches could be selected. 
 
The lack of copy and paste commands within the program could cause problems in 
large circuits in which particular features are regularly repeated.  The consequence of 
this is the increased time necessary to test circuit designs and the potential for 
introduction of errors in multiple productions, of what should be identical sections. 
 
Finally, because the current chip catalogue did not provide any chips with IO capacity 
for testing, the correct simulation of such devices cannot be confirmed without further 
work, which must be undertaken to ensure accurate working of the simulation in this 
area. 
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6.1 Future Work 
Although the Java Breadboard Simulator is a useful tool to the Universities 
electronics courses, there are several areas in which could be improved by further 
work. 
 
The biggest letdown in terms of the main program is that it relies on external 
packages for the plotting of waveforms.  The ability to view these waveforms is very 
important to the analysis of a circuit and so the feature should be incorporated into the 
program proper. 
 
To further the metaphor for representing the real world techniques in the program 
additional components need to be developed to provide power supplies, signal 
generators and cathode-ray oscilloscopes. 
 
In addition to more chips from the Texas Instruments range, the addition of 
microprocessor and memory devices to the program would enable the simulation of 
the entire digital core of the student electronics systems and would be a unique feature 
for simulators of this class. 
 
To provide access to many more device models, it may be useful to add an interpreter 
for the Verilog or VHDL hardware description languages. 
 
It may be useful to provide a method to automatically translate the graphical 
representation used in the Java Breadboard Simulator to or from IEEE representation 
to assist in the documentation of circuitry or allow for easy transition between the two 
representations. 
 
Finally, to be able to cover the entire range of circuitry used in the laboratories a 
circuit-level simulation needs to be developed, either as part of this application or as 
an accompanying program.  The main reason for the development of the Java 
Breadboard Simulator was to allow development and testing of circuits outside of 
laboratory time and until the testing of all possible circuitry is possible, the 
requirements will not have been completely met. 
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8 Appendices 

8.1 User Guide 
The user guide details the function of the various menu and toolbar entries.  The 
toolbar entries are denoted by the icon next to the equivalent menu item. 
 

File Menu  

File-New (Ctrl-N) Clear current circuit. 

File-Open (Ctrl-O) Open a circuit file. See Help-Loading and Saving for more details on 
enabling loading and saving. 

File-Save (Ctrl-S) Save the current circuit. See Help-Loading and Saving for more details on 
enabling loading and saving. 

     File-Exit Quit the program. 

  

Edit Menu  

Edit-Selection mode 
(Insert) 

Switch to Selection mode.  In this mode, you can move boards and 
components. 

Edit-Delete (Delete) Delete currently selected object, or the wire that is currently being drawn. 
 Will not work in simulation mode. 

  

Insert Menu To insert anything but a breadboard, the circuit must contain at least one 
breadboard that has been selected (coloured blue). 

Insert-Breadboard Insert a Breadboard.  The breadboards are placed automatically but can be 
moved as long as they are not connected by wires to another board. 
The Breadboards power rails are connected automatically with 5v along top 
and 0v along bottom. 

Insert-Chip Brings up a dialog of all the available chips.  The selection will be placed 
onto the currently selected board, but can be moved to others.  See here for 
information on creating additional chips. 

Toolbar-Chip Insert a chip identical to the last one added. 

Insert-Dipswitch Insert a dipswitch. The menu will allow you to select the size of the 
dipswitch. The toolbar just defaults to the last value used. 
 
The Java Breadboard Simulator tries hard not to let you connect separate 
outputs together.  If switching a dip on will connect multiple outputs, the 
application will not let you turn it on. 
 
Dipswitches do not have effect immediately.  The simulation must be 
advanced after changing values.  This is to allow more than one input change 
at any given time. 
It is probably not wise to connect a dipswitch to the positive power rail. This 
is because all the current chip inputs float high. This will result in the input 
always being high whether the switch is on or off. Instead try using the 
negative power rail and combining the switches with a buffer or an inverter 
depending on the direction of the switch you desire. 

     Insert-LED-Red Inserts a red LED. 
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     Insert-LED-Yellow Inserts a yellow LED. 

     Insert-LED-Green Inserts a green LED. 

Toolbar-LED Inserts a LED identical to the last one added. 

  

Wire Menu  

Wire-Add Wires Switch to Wiring Mode. 
 
In wiring mode clicking on a board will start drawing a wire.  Wire sections 
can only be horizontal or vertical, but a single click while drawing will insert 
a bend in the wire.  Double clicking on a board will terminate the wire. 
 
Wires must start and end in valid positions on a board.  The rest of the wire 
is not constricted, and wires may cross boards. 
 
In any mode except for simulation, double clicking on the end of a wire will 
also switch the program into wiring mode, extending from the selected wire. 

     Wire-Cancel Wire 
Segment (Escape) 

While drawing a wire, this option will undo the last corner.  If there are no 
corners to undo then the wire is removed. 

     Wire-Hide Wires 
(Ctrl-H) 

Wires can go anywhere, including over components, so it is easy to lose 
things under wires.  Hiding wires will hide all the wires in the circuit so that 
objects under wires can be selected again. 

     Wire-Unhide Wires 
(Ctrl-U) 

If the circuits wires are hidden this menu item will show them again. 

     Wire-Colours The rest of the items in the wire menu control the colour of the next wire to 
be drawn.  The custom option will bring up a colour chooser allowing 
selection of any colour for a wire. 

  

Simulation  

Simulation-Reset 
Simulation (Backspace) 

Reset simulation, all components and probe traces. 

Pause (Ctrl-T) Pause the currently running simulation. 

Simulation-Step 
Simulation (Enter) 

Steps the simulation by executing all events at the next event time.  If there 
are no events left in the simulation, the time will be advanced by 1ns. 

Simulation-Run 
(Ctrl-R) 

Animate the simulation. 

     Speed Slider  Adjust the speed of the running simulation.  
The slider follows a logarithmic scale with the markers denoting powers of 
10 nanoseconds with 10^0=1ns on the left and 10^9=1,000,000,000ns=1s on 
the right. 
If the speed is set too high the application may not be able to run at the 
selected speed and will instead just go as fast as it can. 

  

Trace Menu Java Breadboard Simulator does not provide any graphing tools of its own, 
however it can export data that can be imported into most spreadsheet 
programs to produce wave outputs. 
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     Trace-Insert Probe Inserts a probe device. 

     Trace-Save Trace Saves the trace up to the current position in the simulation.  The format is 
that of a comma delimited file, with each time on a new line.  The potentials 
are represented by values with -1=NC, 0=LOW, 1=HIGH 
 
eg. 
 
Time,NameOfProbe0,NameOfProbe1,... 
0,0,0,... 
10,1,0,... 
... 
 
 See Help-Loading and Saving for more details on enabling loading and 
saving. 

     Trace-Dual data at 
Time 

If enabled modifies the output of the next trace such that each time the trace 
is updated the previous value is output at the current time, then the current 
value is output at the current time. 
 
eg 
Time,Probe0, 
... 
10,0, 
10,1, 
15,1, 
15,0, 
... 
 
This may help your graphing program produce traces with vertical 
transitions . 

Help Menu    

     Help-User Guide Brings up this page 

     Help-Loading and 
Saving  

Brings up a page detailing how to enable loading and saving with the 
application 

     Help-About Brings up the about box 
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8.2 Example Chip Implementations 

8.2.1 SN7400 Quadruple 2-Input Positive-Nand Gates 
 
/* 
 * @(#)SN7400.java 1.0 14/03/02 
 * 
 * Copyright 2002 Nicholas Glass. All Rights Reserved. 
 *  
 */ 
  
package chips;  
  
public class SN7400 implements jbreadboard.v1_00.ChipModel { 
 private jbreadboard.ChipAccess chip; 
  
 //Chip Information 
 private final String Description ="Quadruple 2-Input Positive-Nand Gates"; 
 private final String Manufacturer="Texas Instruments"; 
 
 //Diagram 
 //NB. The SN5400W has a different pinout to the rest of the range. 
 private String Diagram  ="SN7400.gif"; 
 private String Diagram5400W ="SN5400W.gif"; 
 
 //Chip Size 
 private final int NumberOfPins =7; 
 private final boolean Wide =false; 
 
 
 //Pin Types 
 private final String[] pintypes ={"IN","IN","OUT","IN","IN","OUT","IN", 
       "OUT","IN","IN","OUT","IN","IN","IN"}; 
 private final String[] pintypes5400W={"IN","IN","OUT","IN","OUT","IN","IN", 
       "OUT","IN","IN","IN","IN","IN","OUT"}; 
              
 //Derivatives 
 private int Derivative    =3; //7400 
 private int PackageType   =0; //N 
 private final String[] Derivatives ={"SN5400", 
       "SN54LS00", 
       "SN54S00", 
       "SN7400", 
       "SN74LS00", 
       "SN74S00"}; 
 
 //Package Types 
 //Corresponds to the Derivative above 
 private final String[][] PackageTypes={{"J","W"}, 
       {"J","W"}, 
       {"J","W"}, 
       {"N"   }, 
       {"D","N"}, 
       {"D","N"}}; 
             
 //Switching Characteristics 
 private int Tplh() { 
  if(Derivative==0 || Derivative==3) return 22; 
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  else if(Derivative==1 || Derivative==4) return 15; 
  else return 5; 
 } 
   
 private int Tphl() { 
  if(Derivative==0 || Derivative==3) return 15; 
  else if(Derivative==1 || Derivative==4) return 15; 
  else return 5; 
 }  
  
 //Simulation 
 public void reset() {} 
  
 public void simulate() { 
  boolean powered=false; 
   
  //pins   
  int vcc=13; 
  int gnd=6; 
  int a1=0, a2=3, a3=8, a4=11; 
  int b1=1, b2=4, b3=9, b4=12; 
  int y1=2, y2=5, y3=7, y4=10; 
   
  if(getChipText().equals("SN5400W")) { 
   vcc=3; 
   gnd=10; 
    
   a1=0; a2=5; a3=8; a4=11; 
   b1=1; b2=6; b3=9; b4=12; 
   y1=2; y2=4; y3=7; y4=13; 
  } 
     
  if(chip.readTTL(vcc).equals("HIGH") &&  

chip.readTTL(gnd).equals("LOW")) powered=true; 
   
  //Using !equals(low) instead of equals(high) causes inputs to float high 
  if(powered) { 

if(!(!chip.readTTL(a1).equals("LOW")&&  
     !chip.readTTL(b1).equals("LOW")))  

    chip.write(y1,"HIGH",Tplh()); 
   else chip.write(y1,"LOW",Tphl()); 
    

if(!(!chip.readTTL(a2).equals("LOW") &&   
     !chip.readTTL(b2).equals("LOW")))  

    chip.write(y2,"HIGH",Tplh()); 
   else chip.write(y2,"LOW",Tphl()); 
    

if(!(!chip.readTTL(a3).equals("LOW") &&  
     !chip.readTTL(b3).equals("LOW")))  

    chip.write(y3,"HIGH",Tplh()); 
   else chip.write(y3,"LOW",Tphl()); 
    

if(!(!chip.readTTL(a4).equals("LOW") &&  
     !chip.readTTL(b4).equals("LOW")))  

    chip.write(y4,"HIGH",Tplh()); 
   else chip.write(y4,"LOW",Tphl()); 
  } else { 
   //standard power off events 
   for(int i=0;i<getNumberOfPins()*2;i++) { 
    String type=getPinType(i); 
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    if(!(type.equals("IN") || type.equals("NC"))) 
     chip.write(i,"NC",0); 
   } 
  } 
 } 
  
 public void setAccess(jbreadboard.ChipAccess a) { 
  chip=a; 
 } 
  
 //Chip Information 
  public String getChipText() { 
   return Derivatives[Derivative] + PackageTypes[Derivative][PackageType]; 
  } 
   
  public String getDescription() { 
   return Description; 
  } 
   
  public String getManufacturer() { 
   return Manufacturer; 
  } 
  
   //Diagram 
  public String getDiagram() { 
  if(getChipText().equals("SN5400W")) return Diagram5400W; 
   else return Diagram; 
  } 
   
  //Chip Size 
  public int getNumberOfPins() { 
   return NumberOfPins; 
  } 
  
  public boolean isWide() { 
   return Wide; 
  } 
   
  //Pin Types 
  public String getPinType(int i) { 
   if(getChipText().equals("SN5400W")) return pintypes5400W[i]; 
   else return pintypes[i]; 
  } 
   
  //Derivatives 
  public int getDerivative() {return Derivative;} 
  public int getPackage() {return PackageType;}  
  public String[] getDerivatives() { 
   return Derivatives; 
  } 
  public String[] getPackages() { 
   return PackageTypes[Derivative]; 
  } 
   
  //select the particular derivative 
  public void setDerivative(int t) { 
   Derivative = t; 
  } 
  //select the particular package 
  public void setPackage(int p) { 
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   PackageType = p; 
  } 
} 
 

8.2.2 SN7470 And-Gated J-K Positive-Edge-Triggered Flip Flops with preset 
and clear 

/* 
 * @(#)SN7470.java 1.0 14/03/02 
 * 
 * Copyright 2002 Nicholas Glass. All Rights Reserved. 
 *  
 */ 
  
package chips;  
  
public class SN7470 implements jbreadboard.v1_00.ChipModel { 
 private jbreadboard.ChipAccess chip; 
  
 //Chip Information 
 private final String Description ="And-Gated J-K Positive-Egde Triggered Flip Flops" 
     +" With Preset And Clear"; 
 private final String Manufacturer="Texas Instruments"; 
 
 //Diagram 
 //NB. The SN5470W has a different pinout to the rest of the range. 
 private String Diagram  ="SN7470.gif"; 
 private String Diagram5470W ="SN5470W.gif"; 
 
 //Chip Size 
 private final int NumberOfPins =7; 
 private final boolean Wide =false; 
 
 
 //Pin Types 
 private final String[] pintypes ={"NC","IN","IN","IN","IN","OUT","IN", 
       "OUT","IN","IN","IN","IN","IN","IN"}; 
 private final String[] pintypes5470W={"IN","IN","IN","IN","IN","NC","IN", 
       "IN","IN","OUT","IN","OUT","IN","IN"}; 
  
 //Derivatives 
 private int Derivative    =1; //7470 
 private int PackageType   =0; //N 
 private final String[] Derivatives = {"SN5470", 
       "SN7470"}; 
 
 //Package Types 
 //Corresponds to the Derivative above 
 private final String[][] PackageTypes={{"J","W"}, 
        {"N"}}; 
             
 //Switching Characteristics 
 private int Tplh     =50; 
 private int Tphl     =50; 
 
 
 
  
 //Simulation 
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 //state variables 
 boolean state=true; 
 boolean previousclk=true; 
  
 public void reset() { 
  state=true; 
  previousclk=true; 
 } 
   
 public void simulate() { 
  boolean powered=false; 
   
  //pins   
  int vcc=13; 
  int gnd=6; 
   
  int j1=2, j2=3, nj=4; 
  int k1=9, k2=10, nk=8; 
  int q=7, nq=5; 
  int clr=1, pre=12; 
  int clk=11; 
 
   
  if(getChipText().equals("SN5470W")) { 
   vcc=3; 
   gnd=10; 
    
   j1=6; j2=7;  nj=8; 
   k1=0; k2=13; nk=12; 
   q=11; nq=9; 
   clr=4; pre=2; 
   clk=1; 
  } 
     
  if(chip.readTTL(vcc).equals("HIGH") &&  

chip.readTTL(gnd).equals("LOW")) powered=true; 
   
  //Using !equals(low) instead of equals(high) causes inputs to float high 
  if(powered) { 
    
   boolean j = (!chip.readTTL(j1).equals("LOW") && 
           !chip.readTTL(j2).equals("LOW") && 
            chip.readTTL(nj).equals("LOW")); 
         
   boolean k = (!chip.readTTL(k1).equals("LOW") && 
            !chip.readTTL(k2).equals("LOW") && 
             chip.readTTL(nk).equals("LOW")); 
    

if(chip.readTTL(pre).equals("LOW") && 
chip.readTTL(clr).equals("LOW")) { 

    //pre and clr 
    chip.write(q,"LOW",Tphl); 
    chip.write(nq,"LOW",Tphl); 
   } else if(chip.readTTL(clk).equals("LOW")) { 
    if(chip.readTTL(pre).equals("LOW")) { 
     //pre 
        state=true; 
        chip.write(q,"HIGH",Tplh); 
        chip.write(nq,"LOW",Tphl); 
    } else if(chip.readTTL(clr).equals("LOW")) { 
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     //clr 
        state=false; 
        chip.write(q,"LOW",Tphl); 
        chip.write(nq,"HIGH",Tplh); 
    } 
   } else if(!chip.readTTL(clk).equals("LOW") && 
   previousclk==false && 
   !chip.readTTL(pre).equals("LOW") && 
   !chip.readTTL(clr).equals("LOW")) { 
      
    //positive going clock edge found 
    //and pre and clr are not set 
      
           if(!j && !k) state=state; 
    else if( j && !k) state=true; 
    else if(!j &&  k) state=false; 
    else if( j &&  k) state=!state;  //toggle 
     
    if(state) { 
     chip.write(q,"HIGH",Tplh); 
     chip.write(nq,"LOW",Tphl); 
    } else { 
     chip.write(q,"LOW",Tphl); 
     chip.write(nq,"HIGH",Tplh); 
    } 
   } else if(chip.readTTL(q).equals(chip.readTTL(nq))) { 
    //found unstable state, so come out of it 
    if(state) { 
     chip.write(q,"HIGH",Tplh); 
     chip.write(nq,"LOW",Tphl); 
    } else { 
     chip.write(q,"LOW",Tphl); 
     chip.write(nq,"HIGH",Tplh); 
    } 
   }      
   //update previous-clock store 
   previousclk=(!chip.readTTL(clk).equals("LOW")); 
  } else { 
   //standard power off events 
   for(int i=0;i<getNumberOfPins()*2;i++) { 
    String type=getPinType(i); 
    if(!(type.equals("IN") || type.equals("NC"))) 
     chip.write(i,"NC",0); 
   } 
  } 
 } 
  
 public void setAccess(jbreadboard.ChipAccess a) { 
  chip=a; 
 } 
  
 //Chip Information 
  public String getChipText() { 
   return Derivatives[Derivative] + PackageTypes[Derivative][PackageType]; 
  } 
   
  public String getDescription() { 
   return Description; 
  } 
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  public String getManufacturer() { 
   return Manufacturer; 
  } 
  
   //Diagram 
  public String getDiagram() { 
  if(getChipText().equals("SN5470W")) return Diagram5470W; 
   else return Diagram; 
  } 
   
  //Chip Size 
  public int getNumberOfPins() { 
   return NumberOfPins; 
  } 
  
  public boolean isWide() { 
   return Wide; 
  } 
   
  //Pin Types 
  public String getPinType(int i) { 
   if(getChipText().equals("SN5470W")) return pintypes5470W[i]; 
   else return pintypes[i]; 
  } 
   
  //Derivatives 
  public int getDerivative() {return Derivative;} 
  public int getPackage() {return PackageType;}  
  public String[] getDerivatives() { 
   return Derivatives; 
  } 
  public String[] getPackages() { 
   return PackageTypes[Derivative]; 
  } 
   
  //select the particular derivative 
  public void setDerivative(int t) { 
   Derivative = t; 
  } 
  //select the particular package 
  public void setPackage(int p) { 
   PackageType = p; 
  } 
} 
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8.3 Test Circuits 
The following pages contain the circuits that were used to test the Java Breadboard 
Simulator.  A logic diagram, state-transition table and screen capture is given for each 
one.  In the state-transition tables 0 represents a logical low, 1 represents a logical 
high. 

8.3.1 2-Input Exclusive-Or 

 
 

 
 

8.3.2 Not-S Not-R Flip-flop 

 
 
* If from this state S and R are set to 0 simultaneously Q and Not-Q will oscillate 
between 00 and 11. 

 

 
 
 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

S R Q(t+1) Not-Q 
(t+1) 

0 0 Q(t) Not-Q(t) 
0 1 0 1 
1 0 1 0 
1 1 1* 1* 
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8.3.3 Positive Edge-Triggered D-Type Flip-flop 

 
 

 
 
 

8.3.4 (Clock NAND (Not Clock)) 

 
 
 

 

Clock Y 
0 1 
1 1 

 

D Clock Q 
0 0 to 1 

transition 
0 

1 0 to 1 
transition 

1 
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8.3.5 Asynchronous Four-bit Binary Counter 
Outputs loop counting 0-15 in binary. 

 
 

 
 
 

8.3.6 Wired-Or 

 
 
 
 

 
 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 


